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Abstract. We present a moment equation Rayleigh–Ritz (RR) variational theory for the
ground-state energy. An extended Fourier transform space can be defined through the moment
equation corresponding to a given Schrödinger Hamiltonian. Within this extended space, we
can implement a variational ansatz with respects to configurations of the form9̃E,µ(k) =∑

l T̃l (E, k)µl in which the energy-dependent functionsT̃l (E, k): (i) satisfy the momentum
space Schr̈odinger equation; (ii) are uniquely prescribed; (iii) are (most likely) non-integrable;
and (iv) yield theL2 physical solution for physicalE and µl values. On the basis of this
representation, one can minimize the energy expectation valueE(E, . . . , µl, . . .) with respects
to the E and missing moment variables,µl . The proposed approach is in sharp contrast to
traditional configuration-space RR implementations in which the selection of a variational basis
is not manifesta priori, particularly for problems of spatial dimension greater than one. The
analysis of one- and two-dimension problems is presented.

1. Introduction

Many Schr̈odinger Hamiltonians (including all rational fraction potential problems) can be
transformed into a linear moment equation representation:

d∑
i=s

C(E, p, i)µ(p + i) = 0 0 6 p < ∞ (1.1)

involving the moments of the wavefunctionµ(p) ≡ ∫
xp9(x) dx, and the energy,E.

Since the late 1970s various researchers have developed different quantization
approaches for solving moment equation representations of the Schrödinger equation.
Besides the academic interest in such matters, a more practical incentive has been the
recognition that momentum space based quantization offers a more appropriate setting
in which to solve strongly coupled/singular perturbation type problems and the attendant
interplay of multiscale interactions. An important example is the use of moment quantization
methods (Handyet al 1988) to solve the famous quadratic Zeeman effect for superstrong
magnetic fields, amply reviewed and analyzed in the work of Le Guillou and Zinn-Justin
(1983) (hereafter referred to as LZ). The former approach was able to easily confirm the
more intricate conformal analysis of LZ.

Quantization is a global problem. Non-local representations involving spatially extensive
‘dynamical’ variables, such as moments, should be more sensitive to multiscale features of
a system, from large spatial scale contributions to smaller ones. Handy and Murenzi (1995)
have shown that a moment equation representation quantization faciliates the multiscale
recovery of wavefunctions, from first principles, through continuous wavelet transform
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methods (Chui 1992). Wavelet transform analysis has been very useful in signal and
image processing because of its ability to effectively achieve simultaneous position and
frequency localization; thereby expediting the multiscale recovery of abruptly varying
signals and images. The direct extension of continuous wavelet transform methods to
quantum mechanics has been difficult because arbitrary potential functions (including those
of rational fraction form) do not permit a simple transformation of the Schrödinger equation
into a wavelet equation. Nevertheless, through a moment-equation representation one can
circumvent these difficulties and recover the bound-state wavefunction, systematically, from
large spatial scales down to smaller scales. No other quantum mechanics formalism offers
this flexibility.

Moment quantization methods of comparative relevance to the present work include
those of Blankenbeckler, DeGrand, and Sugar (1980). Their quantization of (1.1) is achieved
by using certain asymptotic relations to constrain the moments and energy. Additional
works by Killingbecket al (1985), Fernandez (1992), Fernandez and Ogilvie (1993) and
Witwit (1995) (and references cited therein) develop perturbation theory methods within the
moment equation representation. One immediate advantage of their collective approach is
that explicit reference to the wavefunction’s perturbative structure is not required. That is,
one can easily generate the perturbative expansion for the energy directly.

In contrast to the preceding eigenenergy estimation methods the works by Handy and
Bessis (1985) and Handyet al (1988) exploit theorems from the classic moment problem
(Shohat and Tamarkin 1963) in order to generate rapidly converging lower and upper bounds
to the ground-state energy. This bounding theory is referred to as the eigenenergy moment
method (EMM).

In this work, we develop a new moment equation quantization method not contained in
any of the aforementioned approaches. It corresponds to a special kind of momentum space
Rayleigh–Ritz variational analysis in which the effective ‘basis’ functions are predetermined
through (1.1). This analysis holds for multidimensional problems as well. An example is
discussed in this work.

Re-examining equation (1.1), we note that the energy dependent coefficients, as well as
the {s, d} indices are problem dependent. The algebraic degree of the configuration space
potential function,d (usually, d > 2), determines the differential order of the associated
momentum space differential equation for the Fourier transformed wavefunction

9̃(k) = 1√
2π

∫
e−ikx9(x) dx = 1√

2π

∞∑
p=0

(−ik)p
µ(p)

p!
.

Viewed as an initial value problem, one can encounter more initialization variables
(dj 9̃(k)/dkj |k=0 = (1/

√
2π)(−i)jµ(j), 0 6 j 6 d) than the usual two associated with

second-order, one-dimensional, problems (9(0) and d9(x)/dx|x=0). The large number of
such variables is the basic obstacle encountered in any moment equation based quantization
scheme. From the above, it is clear that the momentum space initialization variables are
essentially the firstd moments. These are refered to, hereafter, asmissing moments.

In this work, we examine the effectiveness of a Rayleigh–Ritz variational ansatz in
which the missing moments become the variational parameters, together with the variable
energy parameter,E. This approach is quite unique because it requires that one work in
an extended function space with no obviousx-configuration space counterpart. Thus, for
the problems considered here, our momentum space variational analysis will be done with
respects to configurations of the form

9̃E,µ(k) =
d−1∑
l=0

µ(l)T̃l(E, k) (1.2)
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where the energy parameter dependent functionsT̃l(E, k) are analytic and known (in terms
of their power series expansion). More importantly, each of these functions is a solution to
the momentum space Schrödinger equation,H̃9̃(k) = E9̃(k). Generally, the analyticity
property holds for systems where thex-configuration space bound state falls off faster than
a simple exponential (exp(−κx), 0 < κ < ∞). The same also applies for unphysicalE

values, as can be verified through a simple application of the ratio test (refer to section 2).
In this preliminary work, we do not discuss singular potential problems nor those violating
the indicated conditions.

It is important to appreciate that for physical (bound state) values for the energy and
missing moment variables,Eb and µb(l), respectively, theexact bound state is given by
9̃Eb,µb(k) = ∑d−1

l=0 µb(l)T̃l(Eb, k), and must vanish asymptotically, Limk→∞ 9̃b(k) → 0.
Even then, each̃Tl(Eb, k) can be asymptotically unbounded, Limk→∞ T̃l(Eb, k) → ∞ (note
the trivial observation that a bounded function, such as e−k2

, can be written as the sum of
two, or more, unbounded functions: e−k2 = [ek2 + e−k2

] − ek2
).

For unphysical energy and/or missing moment values, the9̃E,µ(k) configuration should
be unbounded as well. In general, these unphysical solutions have no immediatex-
configuration space counterpart. Indeed, unphysical solutions to thex-configuration space
Schr̈odinger equation are unbounded, with infinite power moments, and generally do not
admit a Fourier transform. Therefore, thẽTl(E, k) momentum space expressions do not
appear to be any kind of generalized Fourier transforms for such unphysicalx-configuration
space solutions.

The principal challenge in implementing our moment equation representation Rayleigh–
Ritz variational analysis will be in defining the momentum space energy expectation value

E [E, µ] ≡ 〈9̃E,µ|H̃|9̃E,µ〉
〈9̃E,µ|9̃E,µ〉 (1.3)

while utilizing the power series expansions for theT̃l(E, k) functions. This is discussed in
the following sections. In so far as the smallk power series expansion reflects the large
scale (global)x-configuration bound state, and quantization is basically a global problem,
a reasonable regulation prescription for evaluatingE [E, µ] should still yield satisfactory
ground-state energy estimates. This is the case for all the problems investigated here.

One of the unique features of our variational approach is that the energy expectation
value, E , depends on the energy variable,E. Let E∗, µ∗ denote the parameter values
corresponding to the global minimum for the (regulated)E [E, µ] function:

MinE,µ E [E, µ] ≡ E [E∗, µ∗] ≡ E∗. (1.4)

One expects that a satisfactory regulating prescription forE [E, µ] is one that yieldsE∗ ≈ E∗.
Again, this is verified by our analysis.

Traditional implementations of Rayleigh–Ritz variational analysis work with an
approximate basis set

∑
i ciBi (x) in which the basis functions are chosen as simply as

possible and made to satisfy important features of the desired ground-state wavefunction.
Furthermore, these basis functions are usuallyL2 integrable. In our analysis, we work with
‘basis’ functions that are predetermined by the system equation (equation (1.1)) and (most
likely) unbounded solutions (in power series form) to the momentum space Schrödinger
equation.

Clearly, one could implement a Rayleigh–Ritz variational analysis inx-configuration
space utilizing, when admissible, a Taylor series expansion for the wavefunction. However,
this cannot yield any reasonable values for the ground-state energy because this process
is highly local and does not capture any of the global structure essential to addressing
eigenenergy quantization. A simple example of this is provided towards the end of section 3.
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2. Moment equation variational formalism

For simplicity, consider the rescaled 2Q anharmonic oscillator problem

− ε2 d29

dx2
+ [mx2 + gx2Q]9(x) = E9(x) (2.1)

with

H̃ = ε2k2 − m
d2

dk2
+ g(−1)Q

d2Q

dk2Q

as the corresponding Fourier space Hamiltonian. Theε2 parameter is included for
reasons clarified below, although it is set to unity (ε ≡ 1). Restricting ourselves
to the symmetric configurations, define the even order Hamburger power moments by
u(p) = ∫ ∞

−∞ dx x2p9(x). Upon integrating both sides of (2.1) by
∫

dx x2p, and performing
the necessary integration by parts, we obtain the moment equation

u(p + Q) = g−1
(
2p(2p − 1)ε2 u(p − 1) + Eu(p) − mu(p + 1)

)
(2.2)

for p > 0. This corresponds to a linear, homogeneous, finite-difference equation of order
Q, since the initialization moments{u(0), u(1), . . . , u(Q − 1)} must be specified before
the remaining moments can be generated. They will be referred to asmissingmoments.
The energy appears as an arbitrary parameter,E. The linear dependence on the missing
moments is expressed through the relation

u(p) =
Q−1∑
l=0

ME(p, l)u(l) (2.3)

whereME(i, j) = δi,j , for 0 6 i, j 6 Q − 1. TheME(p, l) coefficients, for fixedl, are
recursively generated through an equation identical to (2.2).

Through a simple asymptotic analysis, the leading behaviour for an arbitraryu-solution
is of the form

u(p + 1)

u(p)
≈

[
ε2

g
(2p)2

]1/(Q+1)

.

This ensures that the (Fourier transform) power series

9̃(k) = 1√
(2π)

∑
p=0

u(p)

(2p)!
(−ik)2p

has an infinite radius of convergence, as verified through the ratio test, and is therefore
entire. The same holds for

T̃l(E, k) = 1√
(2π)

∑
p=0

ME(p, l)

(2p)!
(−ik)2p .

In particular

9̃(E, u; k) =
Q−1∑
l=0

u(l)T̃l(E, k). (2.4)
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The two expressions̃9(k) and9̃(E, u; k) are identical; however, the latter emphasizes the
implicit E andu ≡ (u(0), . . . , u(Q − 1)) dependence.

For physical (bound state) energy and missing moments values, hereafter referred to as
Eb andub, 9̃(Eb, ub; k) is integrable with a finite Hamiltonian expectation value

E [Eb, ub] ≡ 〈9̃(Eb, ub)|H̃|9̃(Eb, ub)〉
〈9̃(Eb, ub)|9̃(Eb, ub)〉

.

Unphysical9 configurations do not satisfy the moment equation, since their power
moments are infinite. Nevertheless, the moment equation contains more moment-solutions,
for arbitraryE and{u(0), . . . , u(Q − 1)}, than are physically allowed.

In general, for arbitrary energy and missing moment values,9̃(E, u, k) may not be
integrable, and thusE [E, u] need not exist. However, with respects to our moments’
Rayleigh–Ritz implementation, this does not matter, as will be clarified below.

From the perspective of distribution theory, it is possible that the inverse Fourier
transform of 9̃(E, u, k) could involve ‘integrable’ generalized functions. In particular,
for the caseε → 0, the general moment solution corresponds tou(p) = ∑2Q−1

j=0 Ajτ
2p

j ,
whereτj is a turning point solutionmτ 2

j + gτ
2Q
j = E. Thus the inverse Fourier transform

becomes a sum of Dirac measures:

1√
(2π)

∫ ∞

−∞
dk exp(ikx)9̃(E, k) =

2Q−1∑
j=0

Ajδ(x − τj ) .

For the physical energy and missing moment values, we cannot computeE [Eb, ub] by
truncating the9̃(Eb, ub; k) power series at some finite order ink and imposing a momentum
space cut-off regulator (i.e.

∫ 3

−3
dk). This is because there would be no guarantee of

consistently generating upper bounds through a Rayleigh–Ritz variational analysis. Instead,
we must define an intermediate transformation :9̃(k) = [ ∑∞

j=0 Cj(−ik)2j
]
(1/s)G̃(k/s),

whereG̃(k/s) falls off exponentially at infinity,G̃(k)−1 is an arbitrary entire function, and
s is an arbitrary scaling parameter.

The C-expansion defines the entire functioñCEb(k). One can now replace the
9̃(Eb, ub) expression in the energy expectation value with the truncatedC-expansion:
9̃(Eb, ub; k) ≈ [ ∑P

j=0 Cj(−ik)2j
]
(1/s)G̃(k/s). If G̃(k) asymptotically approaches zero

fast enough (so that the integration and series summation appearing inE can be interchanged)
then one will obtain convergence to the true ground-state energy in the limitP → ∞. If
this is not the case, then a reasonable choice ofG̃(k) should still yield good estimates for
the ground-state energy as theP-expansion order is increased.

The C-coefficients satisfy the relation

p∑
j=0

Cjs
−[1+2(p−j)]γp−j = ub(p)

(2p)!
(2.5)

where

G̃(k) = 1√
2π

∞∑
n=0

γn(−ik)2n .

Clearly,Cp is recursively generated from the lower order coefficients, and they are linearly
dependent on theu-moments. In particular, we may replaceu(p) → ME(p, l) and thereby



4098 C R Handy

define the correspondingCs asC
(l)

E;j . The associated function is referred to asC̃
(l)
E (k) ≡∑∞

j=0 C
(l)

E;j (−ik)2j . We reemphasize that even though theC̃
(l)
Eb

(k)’s may not be integrable

individually, collectively they define an integrable function,C̃Eb(k) = ∑
l ub(l)C̃

(l)
Eb

(k), for

physicalEb andub. The power series expansion ofC̃Eb(k) is the sum of the power series
for eachC̃

(l)
Eb

(k).
Let us now define

9̃P(E, u; k) ≡
[

Q−1∑
l=0

u(l)

( P∑
j=0

C
(l)

E;j (−k2)j
)]

1

s
G̃(k/s) . (2.6)

The E-expectation value for such̃9P(E, u; k) configurations exist. We may therefore
minimize over theE andu variables. We have

EP [E, u] ≡ E [9̃P(E, u)]

or

EP [E, u] =
∑Q−1

l1,l2=0 u(l1)GE(l1, l2)u(l2)∑Q−1
l1,l2=0 u(l1)DE(l1, l2)u(l2)

(2.7)

where

GE(l1, l2) = s−2
P∑

j1,j2=0

C
(l1)

E;j1

〈
(−k2)j1G̃(k/s)

∣∣H̃∣∣(−k2)j2G̃(k/s)
〉
C

(l2)

E;j2

and

DE(l1, l2) = s−2
P∑

j1,j2=0

C
(l1)

E;j1

〈
(−k2)j1G̃(k/s)

∣∣(−k2)j2G̃(k/s)
〉
C

(l2)

E;j2
.

Note that for one-dimensional problems, the dimension of theGE(l1, l2) matrix is fixed atQ.
The denominator quadratic form in (2.7) defines a positive matrix. As such, we may

determine its associated positive square root matrixDE = S2
E and redefinev ≡ SEu.

Consequently,EP [E, u] = 〈v|S−1
E GES−1

E |v〉/〈v|v〉. The minimum over thev vector space
corresponds to the smallest eigenvalue for theS−1

E GES−1
E matrix. Thus we have

Minu EP [E, u] = 3P(E) ≡ smallest eigenvalue of
(
S−1

E GES−1
E

)
. (2.8)

The full implementation of the moment equation based Rayleigh Ritz variation also
requires varyingE; therefore we have

Eground 6 MinE 3P(E). (2.9)

As previously suggested, any valid interpretation of the above Fourier space formalism
in configuration space will require significant use of distribution theory. Despite this, we
can symbolically perform the same manipulations in configuration space, facilitating the
derivation of useful formulae. Thus, we may work with the symbolic inverse Fourier
transform of9̃(k) which we take to be9(E, u, x) ≡ ∑Q−1

l=0 u(l)Tl(E, x). The expression
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Tl(E, x) implicitly refers to the limiting form (P → ∞) of the inverse Fourier transform
of the expansion(

∑P
j=0 C

(l)

E;j (−k2)j )s−1G̃(k/s). The moments ofTl(E, x) correspond to∫ ∞
−∞ dx x2pTl(E, x) = ME(p, l). We can takeTl(E, x) = (

∑∞
j=0 C

(l)

E;j ∂
2j
x ) G(sx), whereG

is the inverse Fourier transform of̃G. It then follows that

ME(p, l) =
p∑

j=0

C
(l)
j [E]

(2p)!

(2(p − j))!
0s(p − j)

where

0s(p − j) =
∫

dx x2(p−j)G(sx) = (2[p − j ])! s−[1+2(p−j)]γp−j .

3. Numerical examples

We will consider the one-dimensional potentials corresponding to the quartic, sextic, and
octic anharmonic oscillators (Q = 2, 3, 4, respectively). In addition, the two-dimensional
potential V (x, y) = x2 + y2 + λ(xy)2 will also be considered. In all cases,G(sx) =
exp(−s2|x|2). For the one-dimensional cases, expressions of the form

I(l1, l2, σ, ρ) =
P∑

i1,i2=0

C
(l1)

E;i1
C

(l2)

E;i2

∫ ∞

−∞
dx

(
∂2i1+σ
x exp(−(sx)2)

)
xρ

(
∂2i2+σ
x exp(−(sx)2)

)
for σ = 0, 1 andρ 6 2Q, are required. Substituting

∂2ik+σ
x exp(−(sx)2) = ∂

2ik+σ
δk

exp(−(s[x + δk])2) for k = 1, 2

and takingδk → 0 after doing the integral gives the relation∫ ∞

−∞
dx

(
∂2i1+σ
x exp(−(sx)2)

)
xρ

(
∂2i2+σ
x exp(−(sx)2)

)
= s2(i1+i2+σ)−1−ρ

2i1+σ∑
n1=0

2i2+σ∑
n3=0

(−2)n1+n3(−1)n2+n4(2i1 + σ)! (2i2 + σ)!
√

2
1+ρ+n1+n3 ∏4

k=1 nk!

× �

(
ρ + n1 + n3

2

)
wheren1 + 2n2 = 2i1 + σ , n3 + 2n4 = 2i2 + σ (both n2 andn4 must also be positive), and
�(n) = ∫

dx x2n exp(−x2) = ((2n − 1)!!/2n)
√

π .
In the two-dimensional problem case, the moment equation forx ↔ −x andy ↔ −y

symmetric configurations,u(p, q) = ∫ ∫
dx dy x2py2q9(x, y), is

λu(p + 1, q + 1) = Eu(p, q) − u(p + 1, q) − u(p, q + 1) + 2p(2p − 1)u(p − 1, q)

+ 2q(2q − 1)u(p, q − 1) (3.1)

whereu(p, q) = u(q, p) for the ground state. The missing moments are{u(l, 0)|0 6 l <

∞}. We have thatu(p, q) = ∑
l=0 ME(p, q, l)u(l, 0), whereME(i, 0, j) = ME(0, i, j) =
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δi,j . All of the moments corresponding to 06 p, q 6 P depend only on the missing
momentsu(l, 0) for 0 6 l 6 P.

Using the symbolic representation9(x, y) = ∑
l=0 u(l, 0)Tl [E, x, y] where

Tl [E, x, y] =
∑

i

∑
j

C
(l)

E;i,j ∂
2i
x ∂2j

y exp(−(sx)2 − (sy)2)

we obtain

p∑
i=0

q∑
j=0

C
(l)

E;i,j
(2p)!(2q)!0(p − i)0(q − j)

[2(p − i)]![2(q − j)]!
= ME(p, q, l) .

Hence theC(l)

E;i,j ’s are obtainable recursively as in the one-dimensional case. The relevant
integral expressions for calculating the Hamiltoninan expectation value can be computed in
a manner similar to that for the one-dimensional problems.

Table 1. Moment equation Rayleigh–Ritz variational analysis.

Potential E∗ E∗ P Eground

x2 + x4 1.392 337 92 1.392 351 74 8 1.392 351 642a

x2 + x6 1.436 12 1.435 654 6 10 1.435 624 619a

x2 + x8 1.490 9 1.491 072 15 1.491 019 895a

x2 + y2 + (xy)2 2.195 89 2.195 965 9 2.195 918 085b

aHandy (1996).
bVrscay and Handy (1989).

The results for all four examples are given in table 1. In each case, as the order of
the calculation,P, increases, the moment RR estimates monotonically converge to the true
value (cited in the last column of table 1). However, such monotonic behaviour need not
always be the case. We contrast the variational results (see equation (1.4) for clarification
of E∗ andE∗) with the more exact answers found in the literature. In all casess = 1 and
all other parameters also set to unity (m = g = λ = 1). The results for thex2 +x6 potential
show that theE∗ value does not necessarily define a lower bound to the ground-state energy.
In the other three cases, it does give a lower bound.

By way of comparison, we tested the effectiveness of a Rayleigh Ritz ansatz
for the anharmonic potentials (x2 + gx2Q) utilizing functions of the form9(x) ≈( ∑P

j=0 DE;j x2j
)

exp(−x2), where theD-expansion represents the power series expansion
obtained after replacing the wavefunction with the representation9(x) = D(x) exp(−x2).
The recursion relation for theDE;j coefficients is given byD0 ≡ 1, D1 = 1

2(2 − E),

Di+1 = (8i + 2 − E)Di − 3Di−1

2(i + 1)(2i + 1)
(3.2a)

for 1 6 i 6 Q − 1, and

Di+1 = (8i + 2 − E)Di − 3Di−1 + Di−Q

2(i + 1)(2i + 1)
(3.2b)

for i > Q.
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The energy expectation value involves the simple expression

E (P)

2Q (E) =
〈∑P

i=0 Dix
2ie−x2| − ∂2 + x2 + x2Q| ∑P

j=0 Djx
2j e−x2

〉
〈∑P

i=0 Dix2ie−x2| ∑P
j=0 Djx2j e−x2

〉 . (3.3)

The numerator and denominator are given by the expressions

P∑
i,j=0

DiDj (4ijI(i + j − 1) + 5I(i + j + 1) − 4(i + j)I(i + j) + I(i + j + Q))

and
∑P

i,j=0 DiDjI(i + j), respectively, whereI(n) ≡ ∫ +∞
−∞ x2n exp(−2x2), I(0) = √

π/2,

andI(n) = 1
4(2n − 1)I(n − 1). The entire procedure mimics that developed previously in

the Fourier-moment representation.
Unlike the moment formulation in whichE and the missing moments are variational

parameters, the present configuration space analysis only involvesE as a variational
parameter. As such, below we cite theE (P)

2Q Rayleigh Ritz variational estimates obtained,
as well as theE parameter value,E∗, for which the smallest RR Hamiltonian expectation
value is observed (MinEE (P)

2Q (E) ≡ E (P)

2Q (E∗)).
For g = 1, in all three casesQ = 2, 3, 4, corresponding to the quartic, sextic, and

octic potentials, respectively, the ensuingx-configuration space RR analysis did not yield
converging bounds to the true ground-state energy value cited in the last column of table 1.
The numerical results (not presented here in their entirety) reveal that as the order,P,
of the calculation increases, the RR estimates significantly diverge from the true physical
values. This behaviour is contrary to the moment equation RR variational analysis where
each increase in the order of the calculation yielded better results.

The quartic anharmonic oscillator results were consistent with the true value. Thus for
P = 4, we haveE (4)

4 = 1.392 479 (E∗ = 1.3852); however, as the order increases, the
results appear to diverge from the true value of 1.392 351 642. Specifically,E (5)

4 = 1.392 59
(E∗ = 1.3964).

For the sextic and octic potentials, the results were dramatically inferior, becoming
progressively worse asP increased. Thus, for the sextic case we obtainedE (2)

6 ≈ 1.443
(E∗ = 1.5691), whereasE (7)

6 ≈ 1.813 61 (E∗ = 1.435 25). For the octic anharmonic
potential,E (2)

8 ≈ 1.5516 atE∗ = 1.6116, whereasE (4)

8 ≈ 2.3332 atE∗ = 1.1535.
The preceding configuration space results substantiate the earlier remarks that such local

expansions are insensitive to the global nature of eigenenergy quantization. Of course, one
could make some adjustments to improve the situation (i.e. treat the exponent variationally);
however, our objetive is to contrast the relative effectiveness of the moment equation
representation RR analysis compared to an analogous, but unsuccessfull, configuration space
implementation.

4. A rational fraction potential

Although the examples presented were faciliated by the polynomial nature of the
configuration space potential, there is nothing in the preceding formalism that limits its
applicability to other types of potentials. Thus, one can examine the potential problem

V (x) = x2 + λx2

1 + gx2
.
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Upon multiplying both sides of the corresponding Schrödinger equation by 1+ gx2,
multiplying by x2p, and integrating, one obtains a moment equation of the form

gu(p + 2) = [gE − λ − 1]u(p + 1) + [E + 2g(p + 1)(2p + 1)]u(p)

+ 2p(2p − 1)u(p − 1) p > 0 (4.1)

for the even order Hamburger moments of the ground-state wavefunction,u(p) =∫ ∞
−∞ dx x2p9(x).

The moment equation is of missing moment order 1. Accordingly, we can take
u(p) = ∑1

l=0 ME(p, l)u(l), where theME(p, l) coefficients satisfy equation (4.1), with
respect to the ‘p’ index, and obey the initialization conditionsME(i, j) = δi,j , for
0 6 i, j 6 1. We may then express the formal Fourier transform of the wavefunction
by

9̃(k) = 1√
2π

∑
p=0

(−ik)2p

(2p)!
u(p) or 9̃(k) =

1∑
l=0

u(l)T̃l(E, k)

as before. A simple asymptotic analysis should confirm that the functions

T̃l(E, k) = 1√
2π

∑
p=0

(−ik)2p

(2p)!
ME(p, l)

have an infinite radius of convergence ink-space.
The Fourier space representation for the Schrödinger equation (i.e. [−∂2 + V (x)]9 =

E9) is

[k2 − ∂2
k ]9̃(k) − λ√

2π
∂2
k

∫
dk1 R̃(k − k1)9̃(k1) = E9̃(k) (4.2)

where R̃(k) is the Fourier transform of 1/(1 + gx2) or R̃(k) = √
π/2g exp(−|k|/√g);

however, we will not need to work explicitly in Fourier space.
The energy expectation value

E(E, u(0), u(1)) = 〈9̃(k)|H̃|9̃(k)〉
〈9̃(k)|9̃(k)〉 (4.3)

can be approximated bỹ9(k) = exp( 1
2k2)

∑1
l=0u(l)C(l)(k), andC(l)(k) ≡ exp(− 1

2k2)T̃l(E, k)

≈ ∑P
p=0C

(l)
p (−ik)2p, as was done for the anharmonic potentials. TheC(l)

p coefficients satisfy

C(l)
p = 1√

2π

ME(p, l)

(2p)!
−

p−1∑
k=0

( 1
2)p−k

(p − k)!
C

(l)
k .

We can perform all the necessary integrals in configuration space. Simply replace
9(x) → ∑1

l=0 u(l)
∑P

p=0 C(l)
p ∂

2p
x exp(−x2/2). Note that unlike the anharmonic cases

previously considered, we choose the exponential argument to be−x2/2, not −x2. For
this problem, the former yields the excellent results quoted below.
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Let us defineFQ(x) ≡ ∂Q
x exp(−x2/2). If Q is even, letj = Q/2 andδQ ≡ 0. If Q

is odd,j = (Q − 1)/2 andδQ ≡ 1. We then have

FQ(x) = exp(−x2/2) Q!
j∑

p=0

(−x)2p+δQ

(2p + δQ)!

(− 1
2)j−p

(j − p)!
. (4.4)

The expectation value becomes (to orderP)

E(E, u(0), u(1)) =
∑1

l1,l2=0 u(l1)N (l1, l2)u(l2)∑1
l1,l2=0 u(l1)D(l1, l2)u(l2)

(4.5)

where

N (l1, l2) =
P∑

j1,j2=0

C
(l1)
j1

(∫
dx F2j1(x)

[
−∂2

x + x2 + λx2

(1 + gx2)

]
F2j2(x)

)
C

(l2)
j2

(4.6a)

(note that the
∫

dx F2j1(−∂2
x )F2j2 term is equivalent to

∫
dx F2j1+1F2j2+1) and

D(l1, l2) =
P∑

j1,j2=0

C
(l1)
j1

(∫
dx F2j1(x)F2j2(x)

)
C

(l2)
j2

. (4.6b)

The integrals appearing in equations (4.6a), (4.6b) can be readily done through standard
integration routines. Note that these integrals only need to be done once, they are
independent of theE parameter (recall that theC(l)

j coefficients are implicitlyE dependent).

Table 2. Moment equation RR analysis,V (x) = x2 + λx2/(1 + gx2), g = 2, λ = 0.1.

P E∗ E∗ Other methods

2 1.026 1.017 181 806 1.017 176 < E0 < 1.017 185a

3 1.020 1.017 181 063 1.017 281 60b

4 1.0181 1.017 180 708 1.017 180 290 061 535 662 051 677 19c

5 1.0176 1.017 180 531

aHandy (1985).
bLai-Lin (1982).
cHodgson (1988).

The results of our Rayleigh–Ritz variational analysis with respect to the two-dimensional
matrices appearing in (4.6a), (4.6b), for arbitraryP 6 5 are given in table 2. We picked the
parameter valuesg = 2 andλ = 0.1, the subject of some modest controversy (Handy 1985)
in contrasting the eigenvalue moment method (EMM) of Handy and Bessis (1985) with
the Hellman–Feynman hypervirial variational approach of Lai and Lin (1982) (LL). The
latter method yielded the ground-state energy estimate ofE

(LL)

0 = 1.017 281 60. The EMM
analysis gave the bounds 1.017 176< E0 < 1.017 185, clearly invalidating the implied
accuracy of the LL results. The accuracy of the EMM bounds was confirmed subsequently
by Hodgson (1988).

The aforementioned EMM bounds were generated not with respects to the moment
equation in (4.1) but with respects to a more suitable transformation of it into another
function-representation space (Handy 1985). Direct application of EMM theory to the
moment equation in (4.1) yields poor bounds: 0.49 < E0 < 1.60, for an expansion order
of P = 30. Despite this, the moment equation Rayleigh Ritz analysis based on (4.1) gives
excellent results surpassing the quoted EMM bounds. These are given in table 2.
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